



Mechanical Data Dimensions in mm (inches)

Case Style LCC6 Underside View

MULTI-CHIP ARRAY

FEATURES

- Silicon NPN & PNP Epitaxial Transistors
- Silicon Schottky Diode
- Hermetic Ceramic Surface Mount Package
- Small Size, Low Weight
- High Reliability
- Various Screening Options

ABSOLUTE MAXIMUM RATINGS

P_{D}	Total Power Dissipation @ T _A = 25°C	1.15W
	Derate above 25°C	11.5mW/°C
T_A	Operating Temperature Range	-55 to +125°C
T_{STG}	Storage Temperature Range	-55 to +150°C
T_{SOL}	Soldering Temperature @ ∆t = 10secs	230°C
R_{\thetaJA}	Thermal Resistance Junction to Ambient	87°C/w

Semelab PIc reserves the right to change test conditions, parameter limits and package dimensions without notice. Information furnished by Semelab is believed to be both accurate and reliable at the time of going to press. However Semelab assumes no responsibility for any errors or omissions discovered in its use. Semelab encourages customers to verify that datasheets are current before placing orders.

E-mail: sales@semelab.co.uk

Semelab plc. Telephone +44(0)1455 556565. Fax +44(0)1455 552612.

Website: http://www.semelab.co.uk

ELECTRICAL CHARACTERISTICS ($T_A = 25^{\circ}C$ unless otherwise stated)

PNP TRANSISTOR

	Parameter	Test Conditions		Min.	Тур.	Max.	Unit
V _{(BR)CBO*}	Collector – Base Breakdown Voltage	I _C = 10μA	I _E = 0	- 12			
V _{(BR)CEO}	Collector – Emitter Breakdown Voltage	I _C = 10mA	I _B = 0	- 12			V
V _{(BR)EBO}	Emitter – Base Breakdown Voltage	I _E = 10μA	I _C = 0	- 4			
I _{CBO}	Collector Cut-off Current	$V_{CB} = -6V$	T _{amb} = 125°C			- 10	π Λ
I _{CES}	Collector Cut-off Current	$V_{BE} = 0$	V _{CE} = -6V			- 80	nA
		$I_C = -10mA$	$I_B = -1 \text{mA}$			-0.15	
V _{CE(sat)}	Collector - Emitter Saturation Voltage	$I_C = -30 \text{mA}$	$I_B = -3mA$			-0.20	V
		$I_{C} = -100 \text{mA}$	$I_B = -10mA$			- 0.50	
	Base – Emitter On Voltage	$I_C = -10mA$	$I_B = -1 \text{mA}$	-0.78		-0.98	V
V _{BE(sat)}		$I_C = -30 \text{mA}$	$I_B = -3mA$	-0.85		-1.2.	
, ,		$I_{C} = -100 \text{mA}$	$I_B = -10mA$			-1.7	
	DC Current Gain	$I_C = -10mA$	$V_{CE} = -0.3V$	30			
		$I_C = -30 \text{mA}$	$V_{CE} = -0.5V$	40		150	
h _{FE}		$I_{C} = -100 \text{mA}$	$V_{CE} = -1V$	25			
		$I_C = -30 \text{mA}$	$V_{CE} = -0.5V$	17			
			T _{amb} = 125°C				
£.	Current Gain Bandwidth Product	$V_{CE} = -10V$	f = 100MHz	400			MHz
f _T		$I_C = -30 \text{mA}$					
	Emitter – Base – Capacitance	$V_{EB} = -5V$	I _C = 0				pF
C _{ebo}		f = 1MHz				6	
0	Collector – Base – Capacitance	$V_{CB} = -5V$	I _C = 0			6	pF
C_{cbo}		f = 1MHz					
	Turn on Time	$I_C = -30 \text{mA}$	V _{CE} = -2V			00	
t _{on}		$I_{B2} = -1.5 \text{mA}$				60	ns
	Turn off Time	$I_C = -30 \text{mA}$	V _{CE} = -2V			1	
t _{off}						9	ns

^{*} Pulse Test: $t_p \leq 300 \mu s, \ \delta \leq 2\%.$

Semelab Plc reserves the right to change test conditions, parameter limits and package dimensions without notice. Information furnished by Semelab is believed to be both accurate and reliable at the time of going to press. However Semelab assumes no responsibility for any errors or omissions discovered in its use. Semelab encourages customers to verify that datasheets are current before placing orders.

Semelab plc. Telephone +44(0)1455 556565. Fax +44(0)1455 552612. Document Number 2704

E-mail: sales@semelab.co.uk Website: http://www.semelab.co.uk Issue 1

ELECTRICAL CHARACTERISTICS (T_A = 25°C unless otherwise stated)

NPN TRANSISTOR

	Parameter	Test Conditions		Min.	Тур.	Max.	Unit
V _{(BR)CEO*}	Collector – Emitter Breakdown Voltage	I _C = 10mA		15			V
V _{(BR)CBO}	Collector – Base Breakdown Voltage	I _C = 10μA		40			V
V _{(BR)EBO}	Emitter – Base Breakdown Voltage	$I_E = 10\mu A$		4.5			V
I _{CES}	Collector – Emitter Cut-off Current	V _{CE} = 20V				0.40	
		V _{CE} = 10V				0.30	μΑ
			$T_A = +150^{\circ}C$			30	1
ı	Collector – Base Cut-off Current	V _{CB} = 20V				0.20	T
I _{CBO}			$T_A = +125^{\circ}C$			30	- μΑ
I _{EBO}	Emitter – Base Cut-off Current	$V_{EB} = 4V$				0.25	μΑ
		I _C = 10mA	I _B = 1mA			0.20	
\	Callantar Fraittar Catamatica Vallana		$T_A = +150^{\circ}C$			0.30	1 ,,
V _{CE(sat)}	Collector – Emitter Saturation Voltage	$I_C = 30mA$	I _B = 3mA			0.25	V
		I _C = 100mA	I _B = 10mA			0.43	1
	Base – Emitter Saturation Voltage	I _C = 10mA	T _A = +25°C	0.70		0.85	
		I _B = 1mA	$T_A = +150^{\circ}C$	0.59			1
V _{BE(sat)}			$T_A = -55^{\circ}C$			1.02	V
, ,		I _C = 30mA	$I_B = 3mA$			0.90	_
		I _C = 100mA	I _B = 10mA			1.20	
	Current Gain	I _C = 10mA	V _{CE} = 0.35V	40		120	_
		$I_C = 30mA$	V _{CE} = 0.40V	30		120	
h _{FE*}		I _C = 10mA	V _{CE} = 1V	40		120	
			$T_A = -55^{\circ}C$	20			
		I _C = 100mA	V _{CE} = 1V	20		120	
lb l	Magnitude of h _{fe}	I _C = 10mA	V _{CE} = 10V	5		10	-
lh _{fe} l		f = 100MHz					
C	Output Capacitance	$V_{CB} = 5V$	I _E = 0			4	55
C _{ob}		f = 100kHz to	1MHz				
C	Input Capacitance	$V_{EB} = 0.5V$	I _C = 0			5	-l pF
C _{ib}		f = 100kHz to	1MHz			5	
	Storage Time	I _C = 10mA				13	ne
t _s		$I_{B1} = -I_{B2} = 1$	0mA		13		ns
t _{on}	Turn-On Time	$I_{C} = 10 \text{mA}$ $I_{B1} = 3 \text{mA}$ $I_{B2} = -1.5 \text{mA}$				12	ns
t _{off}	Turn-Off Time					18	

^{*} Pulse Test: $t_p \leq 300 \mu s, \ \delta \leq 2\%.$

E-mail: sales@semelab.co.uk

Semelab Plc reserves the right to change test conditions, parameter limits and package dimensions without notice. Information furnished by Semelab is believed to be both accurate and reliable at the time of going to press. However Semelab assumes no responsibility for any errors or omissions discovered in its use. Semelab encourages customers to verify that datasheets are current before placing orders.

Website: http://www.semelab.co.uk

Semelab pic. Telephone +44(0)1455 556565. Fax +44(0)1455 552612.

ELECTRICAL CHARACTERISTICS (T_A = 25°C unless otherwise stated)

SCHOTTKY DIODE

	Parameter	Test Conditions		Min.	Тур.	Max.	Unit
I _{R*}	Reverse Current	T _{amb} = 25°C	V _R = 50V			0.2	μΑ
V _{F*}	Forward Voltage	T _{amb} = 25°C	I _F = 1mA			0.41	V
		T _{amb} = 25°C	I _F = 15mA			1	
V _(BR)	Breakdown Voltage	T _{amb} = 25°C	I _R = 10μA	70			V
С	Capacitance	$T_{amb} = 25^{\circ}C$ $f = 1MH_Z$	V _R = 0V			2	PF
t	Effective Minority Carrier Lifetime	T _{amb} = 25°C	I _F = 5mA			100	ps

^{*} Pulse test $\leq 300 \mu s$, $\delta \leq 2\%$

Semelab Plc reserves the right to change test conditions, parameter limits and package dimensions without notice. Information furnished by Semelab is believed to be both accurate and reliable at the time of going to press. However Semelab assumes no responsibility for any errors or omissions discovered in its use. Semelab encourages customers to verify that datasheets are current before placing orders.

Semelab plc. Telephone +44(0)1455 556565. Fax +44(0)1455 552612. Document Number 2704

E-mail: sales@semelab.co.uk

Website: http://www.semelab.co.uk

Issue 1